Differentiation exercise - show differential equation

1. If
$$y = x \sin 2x$$
, prove that $x \frac{d^2y}{dx^2} - 2 \frac{dy}{dx} + \frac{2y}{x} + 4xy = 0$

2. Given that
$$y = e^x - e^{-x}$$
, show that $\left(\frac{dy}{dx}\right)^2 - y^2 - 4 = 0$

3. Given that
$$v = \sqrt{\sin u}$$
, show that $4v^3 \frac{d^2v}{du^2} + v^4 + 1 = 0$

4. Given
$$y = e^{-x} \cos x$$
, show that $\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 2y = 0$.

5. Given that
$$y = \frac{\sin kx}{1 + \cos kx}$$
, where k is a positive integer, show that $\sin kx \frac{d^2y}{dx^2} = k^2y^2$.

6. Given
$$y(2-x) = 3$$
, show that $3\frac{d^2y}{dx^2} - 2y\frac{dy}{dx} = 0$.

7. Given
$$y = (1 + 4x)e^{-2x}$$
, prove that $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + 4y = 0$

8. Let
$$y = \sqrt{\cos x}$$
, show that $4y^3 \frac{d^2y}{dx^2} + y^4 + 1 = 0$.

9. Given
$$(1+x^2)y^2 = 1-x^2$$
, show that $\left(\frac{dy}{dx}\right)^2 = \frac{1-y^4}{1-y^4}$.

10. Form a differential equation from
$$y = Ax^3 + \frac{B}{y^2} - 6x$$
, $x > 0$.

11. Form a differential equation from
$$y = Ax^3 + \frac{B}{x^2} - 6$$
, $x > 0$.

12.
$$y \sin^{-1} 3x = \sqrt{1 - 9x^2}$$
, show that $(1 - 9x^2) \frac{dy}{dx} + 3y^2 + 9xy = 0$

13. Given that $y = x^n[A\cos(\ln x) + B\sin(\ln x)]$, where A and B are constants, show that

$$x^{2} \frac{d^{2}y}{dx^{2}} + (1 - 2n)x \frac{dy}{dx} + (1 + n^{2})y = 0$$

14. Given that
$$y = \sin^{-1} x$$
, show that $(1 - x^2) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} = 0$

15. Let
$$y = 5e^{(\sqrt{3}-2)x} + 3e^{-(\sqrt{3}+2)x}$$
, show that $\frac{d^2y}{dx^2} + 4\frac{dy}{dx} + y = 0$.